Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Ola

Ola Hall

Senior Lecturer, Head of Department

Ola

Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery

Author

  • Ola Hall
  • Sigrun Dahlin
  • Håkan Marstorp
  • Maria Archila
  • Ingrid Öborn
  • Magnus Jirström

Summary, in English

Yield estimates and yield gap analysis are important for identifying poor agricultural productivity. Remote sensing holds great promise for measuring yield and thus determining yield gaps. Farming systems in sub-Saharan Africa (SSA) are commonly characterized by small field size, intercropping, different crop species with similar phenologies, and sometimes high cloud frequency during the growing season, all of which pose real challenges to remote sensing. Here, an unmanned aerial vehicle (UAV) system based on a quadcopter equipped with two consumer-grade cameras was used for the delineation and classification of maize plants on smallholder farms in Ghana. Object-oriented image classification methods were applied to the imagery, combined with measures of image texture and intensity, hue, and saturation (IHS), in order to achieve delineation. It was found that the inclusion of a near-infrared (NIR) channel and red–green–blue (RGB) spectra, in combination with texture or IHS, increased the classification accuracy for both single and mosaic images to above 94%. Thus, the system proved suitable for delineating and classifying maize using RGB and NIR imagery and calculating the vegetation fraction, an important parameter in producing yield estimates for heterogeneous smallholder farming systems.

Department/s

  • Department of Human Geography

Publishing year

2018-06-22

Language

English

Pages

1-8

Publication/Series

Drones

Volume

2

Issue

3

Document type

Journal article

Publisher

MDPI AG

Topic

  • Human Geography

Keywords

  • UAV
  • remote sensing
  • maize
  • OBIA
  • Ghana

Status

Published

ISBN/ISSN/Other

  • ISSN: 2504-446X