Javascript är avstängt eller blockerat i din webbläsare. Detta kan leda till att vissa delar av vår webbplats inte fungerar som de ska. Sätt på javascript för optimal funktionalitet och utseende.

Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Ola Hall, photo.

Ola Hall

Universitetslektor, prefekt

Ola Hall, photo.

Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery

Författare

  • Ola Hall
  • Sigrun Dahlin
  • Håkan Marstorp
  • Maria Archila
  • Ingrid Öborn
  • Magnus Jirström

Summary, in English

Yield estimates and yield gap analysis are important for identifying poor agricultural productivity. Remote sensing holds great promise for measuring yield and thus determining yield gaps. Farming systems in sub-Saharan Africa (SSA) are commonly characterized by small field size, intercropping, different crop species with similar phenologies, and sometimes high cloud frequency during the growing season, all of which pose real challenges to remote sensing. Here, an unmanned aerial vehicle (UAV) system based on a quadcopter equipped with two consumer-grade cameras was used for the delineation and classification of maize plants on smallholder farms in Ghana. Object-oriented image classification methods were applied to the imagery, combined with measures of image texture and intensity, hue, and saturation (IHS), in order to achieve delineation. It was found that the inclusion of a near-infrared (NIR) channel and red–green–blue (RGB) spectra, in combination with texture or IHS, increased the classification accuracy for both single and mosaic images to above 94%. Thus, the system proved suitable for delineating and classifying maize using RGB and NIR imagery and calculating the vegetation fraction, an important parameter in producing yield estimates for heterogeneous smallholder farming systems.

Avdelning/ar

  • Institutionen för kulturgeografi och ekonomisk geografi

Publiceringsår

2018-06-22

Språk

Engelska

Sidor

1-8

Publikation/Tidskrift/Serie

Drones

Volym

2

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

MDPI AG

Ämne

  • Human Geography

Nyckelord

  • UAV
  • remote sensing
  • maize
  • OBIA
  • Ghana

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2504-446X